If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45=5t^2
We move all terms to the left:
45-(5t^2)=0
a = -5; b = 0; c = +45;
Δ = b2-4ac
Δ = 02-4·(-5)·45
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*-5}=\frac{-30}{-10} =+3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*-5}=\frac{30}{-10} =-3 $
| 45=1/2*10t^2 | | 4x+7=-3x-4 | | 3x+10=9x+12 | | 8-3b=-10 | | 18/2x3-6x(-2)+1=x | | 10-4z=70 | | X-5/2-4=x-8/3 | | 6x-72=4x-30 | | 6x-19+3x-10=180 | | 3z+2(6-z)=-(z+2)+2 | | 4x+5=7x+10 | | -4=4(-k-86)+10 | | 14(-19-10x)+16x=-266-130x | | 2x+9=3x-8 | | 3/2b-13/(2(b+2))=6 | | -111-6x=-11x+39 | | a+2/a-2=1 | | 3x=19=40 | | 6(4y+6)=-6(3-y) | | -(x/9)+4=-3 | | p+.4=1 | | 1/n=5 | | 3(a+7)=24 | | (20-2x)/3=(4x+7)/4 | | 7(x+1)+3(x+2)=42 | | 10x-37=5x+23 | | 2e-4=6 | | -2(3y+4)=40 | | .2x+.3=3.1 | | 8x+16=34 | | 2x^2+32x=320 | | .2x=2.8 |